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SUMMARY

A new code for simulating convection in a horizontal layer of ¯uid is described. The code can be used to study
the usual Rayleigh±BeÂnard convection problem but can also incorporate internal heating, rotation and the vortex
force responsible for Langmuir circulation. Boundary conditions in the horizontal directions are periodic, but a
wide range of conditions may be imposed on the upper and lower boundaries.

A novel feature of the method is the way in which these boundary conditions are implemented through the
following analytical=numerical technique. The governing partial differential equations are reduced to a number
of inhomogeneous second-order ODEs for the horizontal Fourier modes. The solutions to these are then written
as the sum of a particular integral and a complementary function. The former is easily computed (numerically)
without regard to the boundary conditions and the latter is then selected (analytically=numerically) to ensure that
the boundary conditions are met.

We apply our code to the problem of highly supercritical thermal convection in a shear ¯ow. We compare our
results with simulations in the literature and, by integrating over a longer time interval, ®nd ¯ow features not
observed in the previous simulations, including stable time-dependent states, multiple stable equilibria and
chaos. # 1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Rayleigh±BeÂnard convection is a topic of intensive research. In addition to its many geophysical

applications, convection is of interest as a mechanism for pattern formation and also for the transition

to turbulence. Much of the research in this ®eld is based on numerical simulations. Since a large

amount of time is spent in formulating algorithms and writing codes, it is important that details of

methods are published in order to avoid unnecessary duplication of effort.

Our code solves the Navier±Stokes and heat equations for convection in a horizontal layer of ¯uid.

The formulation of the governing equations is similar to that of Lundbladh et al.1 for the Navier±
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Stokes equation only. As in their code, the non-linear terms are computed in physical space and time

stepping is done in spectral space. The solution is assumed to be periodic in the two horizontal

directions. However, our code allows a wide range of conditions at the horizontal boundaries, which

are imposed by a novel numerical=analytical method. Mixed boundary conditions may be applied to

the horizontal velocity components and the temperature at the top and bottom boundaries, where

`mixed' means that a linear combination of each physical quantity and its ®rst vertical derivative is

speci®ed. To describe how the boundary conditions are applied, we ®rst note that the code is

pseudospectral, with functions being expanded in Fourier modes in the horizontal directions (x and y)

and Chebyshev modes in the vertical (z). At each time step the governing equations are reduced to a

set of ordinary differential equations (ODEs) in z for each Fourier mode of various physical

quantities. However, not all these quantities have known boundary conditions and a number of the

ODEs must be solved before the physical velocity components can be reconstructed and the boundary

conditions applied. Our procedure is to solve the ODEs formally by writing the solution to each as the

sum of a particular integral and a complementary function. The former can easily be calculated and

the latter is just the sum of two exponential functions of z. The coef®cients of the exponentials are

unknown, but they can be carried through the calculation analytically and ®nally determined when

the velocity boundary conditions are applied at the end of the time step.

Besides permitting generalized boundary conditions, the code allows a wide range of convection

problems to be investigated. The ¯uid layer may be heated from below, corresponding to Rayleigh±

BeÂnard convection. A shear ¯ow driven by the boundary conditions on the horizontal velocity

components may be imposed. This facility is of interest in atmospheric and oceanographic

applications, where convection may take place in the presence of a mean wind or current. At present

only plane Couette ¯ow may be driven because no mean horizontal pressure gradient may be

imposed. A rotating frame of reference may be used, with the rotation vector at any angle to the

vertical. If rotation is combined with a mean ¯ow driven by the horizontal boundaries, then

convection in an Ekman layer may be examined. Internal heating may be included. Our code can also

simulate Langmuir circulation, which is a wind-driven convective motion occurring naturally in

oceans and lakes. To simulate Langmuir circulation using the Craik±Leibovich model,2,3 a `vortex

force' must be introduced into the governing equations. Our code allows a comprehensive treatment

of the Langmuir circulation problem since it may be examined in a rotating, strati®ed layer.

In Section 2 we introduce the governing equations for convection and rewrite them in a form

suitable for numerical solution. The ways in which the equations are discretized in time and

horizontally in space are discussed in Section 3. The mathematical procedure for solving the

boundary value problems in z that result from the horizontal space discretization is summarised in

Section 4, before the numerical implementation of the analysis is addressed in Section 5. We have

written all the code from scratch, apart from the Fourier and Chebyshev transforms (where we have

used those of Lundbladh et al.1). We have tested our code thoroughly by comparing it with analytical

and other numerical results for two- and three-dimensional convection. Some of the comprehensive

checks we have carried out on our code are described in Section 6. In Section 7 we present some new

results for convection at large Rayleigh number in a strong shear ¯ow, which extend calculations of

Hathaway and Somerville.4 By extending the period of integration by a factor of about 10, however,

we ®nd ¯ow features not observed by Hathaway and Somerville.4 We draw our conclusions in

Section 8.

2. GOVERNING EQUATIONS

We consider convection in a horizontal ¯uid layer and begin by non-dimensionalizing the problem in

the standard way.5 If D is the depth of the ¯uid layer and k is the thermal diffusivity, then we adopt
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the following scales: D for lengths, D2=k for time, k=D for velocity. The ¯uid is assumed to be

incompressible and Boussinesq with reference density r0, so r0k
2=D2 serves as a scale for pressure.

The scale for temperature differences is DT. For standard Rayleigh±BeÂnard convection between

isothermal boundaries, DT is the temperature difference across the ¯uid layer. We make the problem

dimensionless using these scales.

The ¯ow domain is then

0 < x < Lx; 0 < y < Ly; ÿ 1
2
< z < 1

2
;

where (x, y, z) form a Cartesian co-ordinate system: x and y are the horizontal co-ordinates and z is a

vertical co-ordinate increasing upwards.

The governing equations are

1

s
@u

@t
� �u ? HH�uÿ 2u�V

� �
� ÿHHp� RaT ẑ� H2u� 1

s
US � �v� 2V�; �1�

@T

@t
� ��u� US�?HH�T � H2T � I ; �2�

HH?u � 0: �3�

Here u� (u, v, w) is the ¯uid velocity, T is the temperature difference from a reference temperature

T0, p is the pressure and v�HH6 u is the vorticity. The parameters appearing are the Prandtl number

s� n=k, where the kinematic viscosity of the ¯uid is n, and the Rayleigh number Ra� ggDTD3=nk,

where g is the acceleration due to gravity and g is the coef®cient of cubical expansion, i.e.

r(T)� r0[17 g(T7 T0)], where r0� r(T0). The unit vertical vector is denoted by z. The

dimensionless rotation vector V is related to the Taylor number Ta by Ta� 4O2=s2, where

O� |V|. The direction V̂ � V=O of the rotation axis may be chosen in any orientation. I is the

strength of internal heating, which is assumed to be constant (possibly zero).

If Langmuir circulation is to be simulated according to Craik±Leibovich theory,2 then US is the

Stokes drift; otherwise US is set to zero. For Langmuir circulation the Stokes drift will be in the x-

direction, with US�US(z)xÃ , where US(z) is given by

US�z� � Rz if b � 0

�R=2b�e2bz if b > 0:

�
Here b (proportional to the wave number of the surface gravity waves) determines the depth pro®le of

the Stokes drift and

R � D2

k
dU dim

S

dzdim

����
z�1=2

determines its magnitude. The superscript `dim' indicates that the corresponding quantity is taken

prior to the non-dimensionalization process.

The code can be used to simulate thermal convection in the presence of an imposed shear ¯ow. At

present no mean horizontal pressure gradient is allowed, so it is not possible to simulate Poiseuille

¯ow. Plane Couette ¯ow can be driven by motion of the horizontal boundaries or by applied stresses.

The time and velocity scales chosen above for the non-dimensionalization are appropriate for thermal

diffusion but are not the natural choices for shear ¯ows and shear ¯ow instabilities (such as Langmuir

circulation). It is therefore necessary for us to rescale some of our results by the Prandtl number in

order to compare them with those in the literature.6
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A useful diagnostic of the convection is the Nusselt number

N� �
� �

@

@z
T �x; y; 1

2
; t�dx dy:

This is the ratio of the heat conducted through the upper boundary in the presence of convection to

that in the absence of convection (in which case the heat transfer is purely by conduction). A similar

Nusselt number Nÿ characterizes the heat transport through the lower boundary.

2.1. Reduction of governing equations

We now reduce the vector equation (1) to a pair of scalar equations, for the vertical component of

the vorticity, o3, and the Laplacian of the vertical velocity component w,7 using the equation of

continuity (3). This is the approach adopted by Lundbladh et al.1

We begin by using the vector identity u�v � 1
2
HHjuj2 ÿ �u?HH�u to rewrite (1) as

1

s
@u

@t
� 1

2
HHjuj2 ÿ u� �v� 2V�

� �
� ÿHHp� RaT ẑ� H2u� 1

s
US � �v� 2V�: �4�

We then introduce H� u6 (v� 2V) and take the curl of (4) to eliminate the pressure and give the

vorticity equation

1

s
@v

@t
ÿ HH�H

� �
� Ra

@T

@y
x̂ÿ Ra

@T

@x
ŷ� H2v� 1

s
�o3 � 2O3�U 0Sx̂ÿ US

@v

@x

� �
: �5�

The z-component of (5) provides us with a scalar equation for o3:

@o3

@t
� @H2

@x
ÿ @H1

@y
� sH2o3 ÿ US

@o3

@x
: �6�

If we now take the curl of (5), we ®nd

@H2u

@t
� H2Hÿ HH�HH ? H� � sRaH2T ẑÿ sRa

@

@z
HHT � sH4uÿ HH� o3U 0Sx̂ÿ US

@v

@x

� �
:

The z-component of this equation provides a scalar equation for w:

@H2w

@t
� H2

HH3 ÿ
@

@z

@H1

@x
� @H2

@y

� �
� sRaH2

HT � sH4w� U 0S
@o3

@y
ÿ USH

2 @w

@x
: �7�

The notation H2
H is used for the horizontal Laplacian.

With this procedure the pressure has been eliminated and there remain the three scalar equations

(2), (6) and (7) to be solved.

2.2. Boundary conditions

All physical quantities are periodic in x and y since we shall represent them in terms of discrete

Fourier modes and so no action need be taken to impose periodic lateral boundary conditions.

The following boundary conditions apply to the velocity components: at z � 1
2
,

a1

@u

@z
� a2u � Utop; a5

@v
@z
� a6v � Vtop; w � 0; �8�
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and at z � ÿ 1
2
,

a3

@u

@z
� a4u � Ubtm; a7

@v
@z
� a8v � Vbtm; w � 0; �9�

where Utop, Ubtm, Vtop and Vbtm are constants. These boundary conditions cover a wide variety of

cases. For example, if we set a1� a3� a5� a7� 0, a2� a4� a6� a8� 1 and Utop� Ubtm�
Vtop�Vbtm� 0, these are the conditions for stationary rigid boundaries. Alternatively, a constant

horizontal velocity of the boundaries may be imposed, to drive a mean shear ¯ow, or a constant stress

may be applied, for example. Mixed boundary conditions are particularly useful for the problem of

Langmuir circulation.8

The temperature satis®es

a9

@T

@z
� a10T � Ttop at z � 1

2
; a11

@T

@z
� a12T � Tbtm at z � ÿ 1

2
: �10�

A common assumption is that the horizontal boundaries are isothermal and this circumstance can be

achieved, for example, by setting a9� a11� 0, a10� a12� 1 and Ttop and Tbtm to the temperatures on

the top and bottom boundaries respectively. Of course, isothermal boundaries are a mathematical

idealization in which the boundary material conducts heat in®nitely better than the ¯uid. When the

conductivities of the ¯uid and the boundary material are comparable, the problem of heat transport in

the ¯uid should be solved together with the corresponding heat conduction problem in the boundaries.

For simplicity, however, we avoid this approach and instead model the general boundary conditions

on the temperature by the `Newton law of cooling' given in (10). General values for a9±a12 are

supposed to simulate ®nitely conducting horizontal boundaries.

2.3. Mathematical problem

The modi®ed governing equations (2), (6) and (7) can be written in the form

@f
@t
� hf � sH2f; �11�

H2w � f; �12�
@o3

@t
� ho � sH2o3; �13�

@T

@t
� hT � H2T : �14�

Here we have introduced f�H2w and the hs are given by

hf � H2
HH3 ÿ

@

@z

@H1

@x
� @H2

@y

� �
� sRaH2

HT � U 0S
@o3

@y
ÿ USH

2 @w

@x
;

ho �
@H2

@x
ÿ @H1

@y
ÿ US

@o3

@x
; hT � ÿ��u� US� ? HH�T � I :

Once w and o3 have been found, u and v can be reconstructed from the de®nition of o3 and the

continuity equation, which yield

H2
Hu � ÿ @

2w

@x@z
ÿ @o3

@y
; H2

Hv � ÿ
@2w

@y@z
� @o3

@x
: �15�
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The horizontal means of u and v, denoted uÅ and �v, cannot be calculated from such expressions and for

these we return to the horizontally averaged Navier±Stokes equations:

@�u

@t
� H1 � sD2 �u;

@�v
@t
� H2 � sD2 �vÿ USO3; �16�

where D� @=@z.

3. DISCRETIZATION

3.1. Horizontal space discretization

A truncated Fourier series is used to discretize in the horizontal directions so that

u � PNx

nx�ÿNx

PNy

ny�ÿNy

û�nx; ny� exp�i�nxkxx� nykyy��;

for example, where

kx �
2p
Lx

; ky �
2p
Ly

:

The transformed variable uÃ(nx, ny) is a function of z and t only. Because the solution is real-valued,

the programme considers explicitly only 04 ny4Ny, with the negative-ny modes obtained as

complex conjugates of the positive-ny modes.

For the (nx, ny) mode the exact equations to be satis®ed are, from (11)±(14),

@f̂
@t
� ĥf � s�D2 ÿ k2�f̂; �17�

�D2 ÿ k2�ŵ � f̂; �18�
@ô3

@t
� ĥo � s�D2 ÿ k2�ô3; �19�

@T̂

@t
� ĥT � �D2 ÿ k2�T̂ ; �20�

where k2 � n2
xk2

x � n2
yk2

y . The `hatted' variables are the Fourier transforms of the corresponding

`unhatted' variables.

The discretization in z will be discussed in Section 5.

3.2. Time discretization

We turn now to the time discretization. We use explicit, Adams±Bashforth time stepping for the

non-linear terms (except for an initial Euler step when the solution is available only at the initial time)

and the implicit trapezium rule for the linear terms. For an equation of the form

@f

@t
� Lf � N �f �;

where L represents the linear diffusion terms and N the hÃs in (17)±(20), our time stepping gives

f n�1 � f n � Dt

2
�Lf n�1 � Lf n� � anN �f n� � bnN �f nÿ1�;
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where Dt is the (constant) time step. The superscript indicates the time step at which the solution is

evaluated. The coef®cients (an, bn) are chosen to be (Dt, 0) for an initial Euler time step (when only

the current function values are known) and (3
2
Dt, ÿ 1

2
Dt) otherwise for an Adams±Bashforth time

step. This equation may be rewritten as

1ÿ Dt

2
L

� �
f n�1 � 1� Dt

2
L

� �
f n � anN �f n� � bnN �f nÿ1�:

We need to recast (17)±(20) in time-discretized form. All four discretizations are similar (even that

for wÃ ). For f(nx, ny) the discretized equation is

1ÿ Dts
2
�D2 ÿ k2�

� �
f̂n�1 � 1� Dts

2
�D2 ÿ k2�

� �
f̂n � anĥn

f � bnĥnÿ1
f :

This is an inhomogeneous, second-order, constant coef®cient ODE for f̂n�1. A rearrangement of the

terms gives

�D2 ÿ l2�f̂n�1 � f̂ n
f ; �21�

where

l2 � k2 � 2

Dts
;

f̂ n
f � ÿ�D2 ÿ l2�f̂n ÿ 4

Dts
f̂n ÿ 2

Dts
�anĥn

f � bnĥnÿ1
f �:

Similar equations govern wÃ , ô3 and TÃ :

�D2 ÿ k2�ŵn�1 � f̂n�1; �22�
�D2 ÿ l2�ôn�1

3 � f̂ n
o ; �23�

�D2 ÿ m2�T̂ n�1 � f̂ n
T ; �24�

where

m2 � k2 � 2

Dt
;

f̂ n
o � ÿ�D2 ÿ l2�ôn ÿ 4

Dts
ôn ÿ 2

Dts
�anĥn

o � bnĥnÿ1
o �;

f̂ n
T � ÿ�D2 ÿ m2�T̂ n ÿ 4

Dt
T̂ n ÿ 2

Dt
�anĥn

T � bnĥnÿ1
T �:

Finally, the horizontal means uÃ(0, 0) and v̂(0, 0) must be considered. They satisfy

D2 ÿ 2

Dts

� �
ûn�1 � f̂ n

�u ; �25�

D2 ÿ 2

Dts

� �
v̂n�1 � f̂ n

�v ; �26�
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where, from (16),

f̂ n
�u � ÿ D2 ÿ 2

Dts

� �
ûn ÿ 4

Dts
ûn ÿ 2

Dts
�anĥn

ubnĥnÿ1
u �;

f̂ n
�v � ÿ D2 ÿ 2

Dts

� �
v̂n ÿ 4

Dts
v̂n ÿ 2

Dts
�anĥn

vbnĥnÿ1
v �:

4. MATHEMATICAL SOLUTION PROCEDURE

The equations to be solved are (21)±(26). Since each is a boundary value problem, there are different

possible approaches. Lundbladh et al.1 use the method of superposition, whereby two particular

integrals are obtained and then an appropriate linear combination of these two is taken in order to

satisfy the boundary conditions. This has the disadvantage that each differential equation must be

solved twice. Our solution procedure involves ®rst ®nding a particular integral of the equation

(numerically), then adding appropriate multiples of the complementary functions (which can be

obtained analytically) to satisfy the boundary conditions.

For this section we drop the `hat' and the superscript n or n� 1. The simplest equation to solve is

that for T because we are given explicit boundary conditions for T. We begin by supposing that a

particular integral TPI of (24) is known. (The details of how TPI is found will be described later.) The

complementary functions of (24) are simply the exponentials em�zÿ1=2� and eÿm�z�1=2�, so the full

solution for T must be of the form

T � TPI � T�em�zÿ1=2� � Tÿeÿm�z�1=2�:

The coef®cients T� and Tÿ are now chosen so that T satis®es the boundary conditions (10). These

coef®cients are

T� �
�ÿa11m� a12�Dtop ÿ �ÿa9m� a10�eÿmDbtm

�a9m� a10��ÿa11m� a12� ÿ �ÿa9m� a10��a11m� a12�eÿ2m ;

Tÿ �
ÿ�a11m� a12�eÿmDtop � �a9m� a10�Dbtm

�a9m� a10��ÿa11m� a12� ÿ �ÿa9m� a10��a11m� a12�eÿ2m ;

where

Dtop � ÿa9T 0PI�12� ÿ a10TPI�12�; Dbtm � ÿa11T 0PI�ÿ 1
2
� ÿ a12TPI�ÿ 1

2
�

for modes other than the (0, 0) mode and

Dtop � ÿa9T 0PI�12� ÿ a10TPI�12� � Ttop; Dbtm � ÿa11T 0PI�ÿ 1
2
� ÿ a12TPI�ÿ 1

2
� � Tbtm

for the (0, 0) mode.

The equations for f and o3 cannot be solved quite as easily because we do not have boundary

conditions for either of these quantities. Our method is ®rst to ®nd particular integrals of the

equations for f, w and o3, then to calculate corresponding expressions for u and v. In general these

expressions do not satisfy the correct boundary conditions, but by adding appropriate complementary

functions to f, w and o3, this problem can be remedied and the boundary condition for w also can be

satis®ed. From (21) we have

f � fPI � f�el�zÿ1=2� � fÿeÿl�z�1=2�;
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where fPI is some particular integral and f� and fÿ are as yet undetermined constants of integration.

Equation (22) for w can then be solved to give

w � wPI � w�ek�zÿ1=2� � wÿeÿk�z�1=2� � Dts
2
�f�el�zÿ1=2� � fÿeÿl�z�1=2��;

where wPI is some particular integral of (D27 k2)wPI�fPI and w� and wÿ are constants of

integration. Finally, o3 is

o3 � oPI � o�el�zÿ1=2� � oÿeÿl�z�1=2�:

To construct u and v, we use (15), which becomes

u�nx; ny� �
i

k2
�nxkxDw� nykyo3�; v�nx; ny� �

i

k2
�nykyDwÿ nxkxo3�

for modes other than the (0, 0) mode. Then the six boundary conditions (8) and (9) on u, v and w give

six equations to be solved for the six unknowns f�, fÿ, w�, wÿ, o� and oÿ. These are solved

systematically in our code.

The horizontal means uÅ and �v are found simply by writing

�u � �uPI � �u�e2�zÿ1=2�=Dts � �uÿeÿ2�z�1=2�=Dts; �v � �vPI � �v�e2�zÿ1=2�=Dts � �vÿeÿ2�z�1=2�=Dts:

Once the particular integrals �uPI and �vPI are known, the coef®cients �u�, �uÿ, �v� and �vÿ are determined

from the boundary conditions (8) and (9).

5. DISCRETIZATION IN z

We have reduced the problem of time stepping to that of ®nding a particular integral of ODEs of the

form

�D2 ÿ a2�f �z� � r�z�; �27�
where a is l, m or k. To solve such an equation numerically, we approximate all functions of z by

truncated sums of Chebyshev polynomials:9

f �z� � PNz

n�0

fnTn�Z�;

where Z� 2z.

Following Lundbladh et al.,1 we ®rst calculate f 00 and then ®nd f 0 and f by integration. This

procedure is numerically better conditioned than solving directly for f.10 We suppose that f, f 0 and f 00

are written as the sums

f �z� �PNz

0

fnTn�Z�; f 0�z� �PNz

0

gnTn�Z�; f 00�z� �PNz

0

hnTn�Z�: �28�

We use the well-known recurrence relation between the Chebyshev coef®cients of a function and

its derivative:

fn �
1

4n
�cnÿ1gnÿ1 ÿ gn�1� for n � 1; . . . ;Nz; �29�
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where c0� 2, cn� 1 for n> 0, and gNz�1 � 0. This allows us to write (27) as a tridiagonal system of

equations for the hn:

h0 � r0 � a2f0; h1 � r1 � a2f1;

1� a2

24

� �
h2 ÿ

a2

16
h0 ÿ

a2

96
h4 � r2;

1� a2

8�n2 ÿ 1�
� �

hn ÿ
a2

16n�nÿ 1� hnÿ2 ÿ
a2

16n�n� 1� hn�2 � rn; 2 < n < Nz ÿ 1;

1� a2

8Nz�Nz ÿ 2�
� �

hNzÿ1 ÿ
a2

16�Nz ÿ 1��Nz ÿ 2� hNzÿ3 � rNzÿ1;

1� a2

16Nz�Nz ÿ 1�
� �

hNz
ÿ a2

16Nz�Nz ÿ 1� hNzÿ2 � rNz
:

For any choice of f0 and f1 this system will provide the Chebyshev coef®cients hn for the second

derivative of some particular integral of (27). The two unknowns f0 and f1 correspond to the two

constants of integration that can be expected to arise in integrating (27) and we choose for simplicity

f0� f1� 0.

The function f itself is then found from a pair of integrations. The ®rst uses the recurrence relation

(29) to obtain f 0 from f 00. The coef®cient g0 is undetermined by this step and is set to zero by the

numerical integration subroutine, to be corrected later (when we impose the condition f1� 0). A

second use of the recurrence relation gives the coef®cients fn, with f0 automatically set to zero by the

integration subroutine. In general f1 will not be zero because we have the wrong value of g0. By

subtracting f1T1(Z) from the calculated function f, however, we ®nd the correct solution with

f0� f1� 0.

5.1. Integration correction

The truncations (28) are, strictly speaking, incompatible. The series (28) for f, f 0 and f 00 are each

obtained by imagining these functions to be written as in®nite series and then truncating them

independently at n�Nz. However, if f were truly a sum of the ®rst Nz Chebyshev polynomials, then f 0

would be a sum of the ®rst Nz7 1 and f 00 of the ®rst Nz7 2. Therefore, if the coef®cients fn were

used to reconstruct the coef®cients of f 0, the result would not be the gn. We have taken no action to

correct this, on the grounds that if we take Nz large enough, then such truncation errors will be

negligible.

5.2. Chebyshev polynomials and expansion of complementary functions

Applying the boundary conditions involves adding combinations of exponential functions to the

particular integrals found above, as in Section 4. We therefore need to express an exponential

function in terms of Chebyshev polynomials. We use the exact relation

eaZ � I0�a� � 2
P1
n�1

In�a�Tn�Z�;

where In is a modi®ed Bessel function. Since the parameters are ®xed for the duration of a run and in

particular we use a constant time step, the values of l, m and k for each Fourier mode do not change in

the course of a calculation. We therefore evaluate the coef®cients In(a) once only, at the start of the

calculation.
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6. VERIFICATION OF THE CODE

We have checked the code thoroughly against analytical and other numerical results. We began by

carrying out fundamental checks on our solutions, for example, using the computer algebra package

Maple to reconstruct the temperature and velocity components from their Chebyshev coef®cients and

verifying that they satisfy the appropriate boundary conditions. We then proceeded to check the

results of the code against independent analytical and numerical results. A sample of the checks is

described in this section.

6.1. Rayleigh±BeÂnard convection

A number of checks of the code were carried out using the much-studied problem of Rayleigh±

BeÂnard convection. These are summarized below.

6.1.1. Linear theory. We ®rst checked the growth rates of small disturbances to the basic state. We

took as an initial condition for our code a small perturbation from the basic state (i.e. the state of pure

heat conduction and no ¯uid motion). Growth rates were estimated by examining the amplitudes of

the Fourier modes.

We compared the calculated growth rates with the eigenvalues of the linear stability problem. For

stress-free, ®xed temperature boundaries they can be calculated analytically. For other boundary

conditions the eigenvalues may be calculated by solving the linear stability problem numericallyÐ

see e.g. Reference 3 for details.

Very accurate results were obtained, con®rming the spectral accuracy of the code. For example, for

stress-free, ®xed temperature boundaries with Ra� 1000, Ly� 2 and s� 1 the analytical growth rate

is 2�621 and the numerical growth rate at a resolution of 16 66 21 is 2�620. With rigid, ®xed

temperature boundaries the minimum critical Rayleigh number is 1708 at Ly� 2�016.7 Our code

agrees with this result, giving growth rates of ÿ0�013 at Ra� 1706, 0�0018 at Ra� 1708 and 0�017 at

Ra� 1710. These growth rates coincide with those obtained by solving the linear stability problem.

6.1.2. Nonlinear theory. For stress-free, ®xed temperature boundaries the weakly non-linear

solution can also be obtained analytically, i.e. the amplitude of convection is known for Rayleigh

numbers close to critical.11 The minimum critical Rayleigh number is 657�51 at Ly � 8
p

and weakly

non-linear analysis predicts that a two-dimensional solution is stable. At a Rayleigh number of 680

the maximum value of the vertical velocity is predicted to be 2�013 and the Nusselt number 1�0684.

Our code gives two-dimensional convection with values of 2�018 and 1�0665 respectively at a

resolution of 86 86 21.

To check our code further from the onset of instability, we compared strongly non-linear results

against the work of Moore and Weiss.12 For stress-free, ®xed temperature boundaries with Ly � 8
p

and a Rayleigh number of 3945�07, six times critical, the Nusselt number is 3�585 at a resolution of

either 16 166 31 or 16 326 31, which agrees with the value 3�58 given by Moore and Weiss.12

6.2. Langmuir circulation

Numerical simulations of two-dimensional (x-independent) Langmuir circulation together with

weakly non-linear analytical results were described by Cox et al.3 We compared our results with

theirs and found excellent agreement. For an unstrati®ed layer (SLT� 0) the agreement between our

code and the weakly non-linear prediction of N� is given in Table I. The analytical prediction is an

asymptotic result, valid in the limit as N� ! 1 (RLT! RLTc� 458�79). The resolution is

16 126 25, Dt� 0�005 and s� 6�7.
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For SLT� 80 we computed a branch of travelling waves at RLT� 800 and 1000. At a resolution of

16 166 33 and with a time step of 0�001, N� takes the values 3�265 and 3�849, where Cox et al.3

®nd 3�264 and 3�848. The difference in each case is less than one part in 1000.

For SLT� 200, the bifurcation sequence reported by Cox et al.3 as RLT is increased is that a branch

of travelling waves develops a temporal instability to modulated travelling waves, which

subsequently cease to exist in a heteroclinic bifurcation to a branch of steady states and standing

waves. We found the same sequence of bifurcations at approximately the same parameter values (we

are unable to compare precise values because we read bifurcation values from their diagrams).

6.2.1. Long-wavelength Langmuir circulation. To check the implementation of the mixed

boundary conditions and the treatment of the linear terms, we compared our results with those of the

long-wave theory of Chapman and Proctor13 and Cox and Leibovich,8 in which an analytical

expression for the linear growth rate of small disturbances is given (see Table II). For Langmuir

circulation the physical problem suggests that we set a1� a3� a5� a7� 1, a6 � 1
2
a2 and a8� 0. The

Table I. Comparison of our code with weakly non-linear (WNL)
results for two-dimensional Langmuir circulation

RLANG (code) RLT N� (code) N� (WNL)

3140�893 468�79 1�3536 1�424
3107�393 463�79 1�1925 1�212
3087�293 460�79 1�0816 1�0848
3080�593 459�79 1�0417 1�0424
3077�243 459�29 1�0212 1�0212

Table II. Comparison of our code with long-wave results for linear growth rate of small disturbances in two-
dimensional Langmuir circulation problem8

RLANG=SIGMA (code) Growth rate (Cox and Leibovich8) Growth rate (code)

(i) FF problem: a2� 0�01, Ly� 10p

120 ÿ0�010315 ÿ0�01036
130 ÿ0�00698 ÿ0�00706
150 ÿ0�000315 ÿ0�00046
170 0�00635 0�00614

(ii) FR problem: a2� 0�01, Ly� 10p

320 ÿ0�010008 ÿ0�010005
330 ÿ0�009696 ÿ0�009694
400 ÿ0�007508 ÿ0�007514

(iii) FR problem: a2� 0�01, Ly� 20p

320 ÿ0�010008 ÿ0�009988
330 ÿ0�009696 ÿ0�009677
400 ÿ0�007508 ÿ0�007493

(iv) RR problem: a2� 0�01, Ly� 10p

720 ÿ0�01006 ÿ0�01011
730 ÿ0�00950 ÿ0�00955

162 S. M. COX AND P. C. MATTHEWS

INT. J. NUMER. METH. FLUIDS, VOL 25: 151±166 (1997) # 1997 by John Wiley & Sons, Ltd.



results of Cox and Leibovich8 are valid in the limit as a27 a4! 0 (a2, ÿa4> 0), in which case the

horizontal scale of the motion is very large compared with the layer depth (which is non-

dimensionalized to unity). For validity of the analytical results we must also have RLT close to RLTc,

where RLTc is given below. The resolution of the numerical runs was 16 126 25 and Dt� 0�002.

We took the special case in which a4� 0 and considered the four separate problems listed below.

Only the ®rst and second are physically reasonable models for Langmuir circulation, but there is a

mathematical analogy between two-dimensional Langmuir circulation and Rayleigh±BeÂnard

convection and so the third and fourth cases also have physically meaningful interpretations. The

problems are: (i) both horizontal boundaries stress-free (FF, RLTc� 120); (ii) the upper boundary

stress-free and the lower rigid (FR, RLTc� 320); (iii) the upper boundary rigid and the lower stress-

free (RF, RLTc� 320); (iv) both horizontal boundaries rigid (RR, RLTc� 720).

7. CONVECTION IN SHEAR FLOW

In this section we describe four simulations of convection at large Rayleigh number which indicate

the effects of a strong shear ¯ow. We originally intended these calculations to be a further check on

our code by comparing our results with corresponding results of Hathaway and Somerville.4

However, we found a wider variety of behaviour than that reported by Hathaway and Somerville,4

most likely because they terminated their integrations after 1�3 dimensionless time units (or less)

whereas we continued ours for about 10 times as long. They described how the ¯uid reached a state of

`quasi-equilibrium' by t� 1�3. We found that signi®cant development of the pattern occurs well after

this time and also that different stable solutions can be obtained depending on the initial conditions.

We took isothermal, rigid boundaries with an applied shear in the x-direction. Thus aj� 0 for odd j

and aj� 1 for even j. Also Utop � 1
2

Ushear, Ubtm � ÿ 1
2

Ushear, Vtop�Vbtm� 0, Ttop� 0 and Tbtm� 1.

The basic state shear was then simply Ushear. Following Hathaway and Somerville,4 we investigated

four values of Ushear (� 0, 50, 100, 200) and took a unit Prandtl number. The computational domain

was 04 x, y4 10 (the depth of the ¯uid layer being normalized to unity). The Rayleigh number was

®xed at Ra� 10,000 for all runs, which is about six times the critical Rayleigh number for convection

with rigid boundaries. For all our integrations the spatial resolution was Nx�Ny� 48 and Nz� 41.

Our initial condition was the equilibrium state plus a small, random perturbation to each Fourier

mode, except where stated otherwise below.

In the absence of shear (Ushear� 0) the convection was three-dimensional, disordered and

unsteady. Figure 1 shows a typical convection pattern in the (x, y) plane viewed from above. The

®gure shows an iso-surface of the vertical velocity component w towards the end of the computation.

The iso-surface value is w� 2, and the maximum vertical velocity is about 30. The computation was

continued until t� 30 to ensure that the system did not settle down to any regular behaviour. Recall

that these are diffusive time units: t� 30 corresponds to over 100 turnover times. The Nusselt number

¯uctuated between 2�1 and 2�3. To check whether the ¯ow was chaotic, the ®nal 10 time units of the

computation were repeated with a small perturbation (� 1%) added to the velocity and temperature

®elds. This showed exponential divergence from the ®rst run, indicating that the ¯ow was indeed

chaotic with a Lyapunov exponent of about 1�8.

The convection in the presence of a shear ¯ow with Ushear� 50 became aligned with the direction

of shear and took the form of three pairs of wavy rolls as shown in Figure 2. The pattern travelled in

the direction of increasing x with a phase speed (dx=dt) of approximately 16�0. The Nusselt number

was 2�36. This right-travelling solution enables us to infer the existence of a corresponding solution

travelling to the left because of the symmetry of the governing equations and boundary conditions.

Our Nusselt number is consistent with the value 2�34 found by Hathaway and Somerville4 after 1�3
time units.
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For stronger shear (Ushear� 100), the convection was organized into ®ve pairs of parallel rolls

aligned with the shear, with no waviness of the rolls apparent (see Figure 3). The Nusselt number was

2�615. By contrast, Hathaway and Somerville4 found three pairs of rolls with a Nusselt number of

2�37. To resolve the discrepancy, we performed a second run at the same parameter values but with a

different initial condition. This time, in addition to the random choice of Fourier coef®cients, we

added a strong component of the (0, 3) mode. After approximately 15 time units a stationary pattern

of three pairs of wavy rolls developed as in Figure 4. The Nusselt number was 2�345. We checked

that both solutions were stable by examining the growth or decay of Fourier modes: all the mode

amplitudes were either stationary or decaying. It seems, therefore, that the patterns of ®ve straight

Figure 1. Iso-surface of vertical velocity for convection at
Ushear� 0

Figure 2. Planform of convection for Ushear� 50. The
pattern drifts to the right. We infer the existence of a

mirror-image left-travelling pattern

Figure 3. A stable planform of convection for Ushear� 100

Figure 4. Another stable planform of convection for
Ushear� 100
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rolls and three wavy rolls were both stable and were selected according to the initial conditions used.

Note that there are fewer waves along the rolls in Figure 4 than in Figure 2, which corresponds to

weaker shear. Thus for stronger shear the three pairs of rolls are more closely aligned with the

direction of shear. A stable pattern with four pairs of rolls was also found by starting from the random

initial condition plus a (0, 4) mode component.

A new phenomenon occurred when the shear was increased further. The solution for Ushear� 200

consisted of four pairs of strongly time-dependent wavy rolls (see Figure 5). These rolls exhibited a

recurrent sequence of `bursting' events during which the convection was strongly three-dimensional,

separated by quiescent periods where the convection was organized into slightly wavy rolls. The

bursts lasted approximately 1 time unit and the separation between bursts was approximately 4 time

units. Figure 5(a) shows the rolls at the start of a burst. As the burst progressed, the marked three-

dimensionality of the rolls declined: Figure 5(b) shows a typical solution near the beginning of the

quiescent period. The interval between the two plots is 1 time unit. For comparison, Hathaway and

Somerville4 reported a ®nal state of straight rolls at t� 0�65; since the period of the bursting events is

approximately 4 time units, it seems that their integrations were of insuf®cient length to ®nd any

signs of bursting.

8. CONCLUSIONS

We have described a code for simulating three-dimensional convection in a layer of incompressible,

Newtonian ¯uid. The mechanism driving the convection may be of thermal or mechanical origin and

the ¯uid layer may be rotating. A novel feature of the code is its manner of implementing the

conditions to be applied to the temperature and velocity ®elds at the horizontal boundaries. This

enables mixed boundary conditions to be applied with a single integration step coupled to a

numerical=analytical modi®cation of the integrated solution to ®t the boundary conditions, rather than

a pair of integrations followed by a superposition. We have described some of the comprehensive list

Figure 5. Planform of convection for Ushear� 200 at two stages of recurrent sequence of bursts. (a) Towards the start of a burst,
the rolls develop signi®cant waviness. (b) Later in the burst, as the burst subsides, the rolls become almost two-dimensional,

and remain so during the quiescent period
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of checks to which we have subjected the code and we believe these offer ®rm evidence of the code's

accuracy.

By extending the calculations of Hathaway and Somerville,4 we have discovered a richer set of

solutions than suggested by their short-time integrations. Many questions remain to be answered,

however, for example, the route by which the chaos arises in the unsheared case and how the distinct

upstream and downstream travelling patterns of wavy rolls arise in the case of Ushear� 50.
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